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Abstract—Low voltage direct current microgrids are seen 
as key components of the future smart grids together with 
their AC counterparts. In the analysis of such microgrids 
the loads are modelled most of the times as constant 
power loads (CPL). This paper proposes a quantification 
of the flexibility introduced by several DC loads, generally 
available in low voltage DC microgrids as in-use 
appliances. The analysis is based on a power flow 
formulation that takes into account the droop control 
coefficients and that includes the actual non-linear 
characteristics of such loads. The models we use for the 
flexible DC loads were experimentally derived through a 
measurement scenario built on steady-state time intervals 
of 10s. 

Index Terms—DC microgrids, DC power flow in droop 
controlled networks, low voltage load modelling. 

I. INTRODUCTION  

Within the last decade one may notice that there is an 
exponential increase in the deployment of distributed power 
generation (DG) installed at low voltage distribution feeders, 
with the dominant technology being rooftop installed PVs. 
Also, in line with this trend, previously shaped concepts such 
as active distribution grids [1] are more and more present in 
the research interests of academia and industry. Traditionally, 
the distribution grids ware designed with a unidirectional 
power flow in mind (where the flow of both real and reactive 
power is always from the higher to lower voltage levels). 

 The changes within the distribution networks due to the 
integration of DG may have positive as well as negative 
impacts to both distribution network service providers 
(DNSPs) and consumers. Among the positive benefits, the 
strongest argument is the improvement in environmental 
impact when DGs use renewable energy sources (RES) [2], 
while voltage profile improvement and line-loss reduction 
might be positive or negative according to an optimal or 
random placement of the DGs within the distribution network 
[2, 3].   

Microgrids and decentralized control at low voltage are 
emerging trends in line with the concept of active distribution 
grids. They are also cited as necessary or valuable cells in a 
network that seeks for increasing its resilience and reliability 
[1]. A microgrid operating at low voltage composes of 
distributed generation (DGs), energy storage system (ESS) - 
which might be or not necessary depending on the type of 
local generaion mix; and loads. Microgrids have the capability 
to work either as a stand-alone, independent system, or 
interconnected to the main distribution grid. Microgrids have 
been proposed operating either with alternative current (AC), 
direct current (DC) or a mix of the two, forming the so-called 
hybrid microgrids[4]. 

AC power grids have been in operation for decades and 
their components and mechanisms to keep the power system 
stable are considered mature enough and well understood. As 
a consequence most of AC microgrids inherited the operation 
concepts from the main power grid [5]. A core analysis tool to 
keep an AC power system on a stable steady state operation is 
the so-called power flow analysis. It is based on a combination 
of real-time monitoring/measurements of the states of the 
system, through measurement units located on a number of 
nodes and calculations for the rest of the nodes in the system 
that makes the system fully observable at any moment in time 
[6]. 

In the case of the DC microgrids, the management of the 
power flow in the system, several methods have been 
proposed; these are mainly based on various control strategies 
such as Master-slave control [7], average current control 
method [8], and droop control using virtual impedance [9]. 
The latter is more and more frequently cited as a common 
practical approach when paralleling the several DC/DC power 
converters interfacing RES-based generation to the microgrid 
[10-12].  Among the major advantages of the voltage droop 
control strategy for DC microgrids one can underline its 
simplicity, together with the possibility to make the controller 
autonomous; moreover, it can be realized with no 
communication. 



 A practical and comprehensive approach to formulate the 
power flow under droop scheme is given in [13]. However, the 
formulation considers only the constant power load models. A 
more general, theoretical approach is given in [14]. Note 
however that this paper focuses on the energy management 
control, the most upper layer of control. Also the objective 
function considered here is the classical quadratic cost of fuel 
similar to dispatch algorithms used for large power plants. 
This assumption might not hold at all in the case of DC 
microgrids with RES-based generation and storage systems.   

The following sections present a background on the droop 
control methods as second and third level control for both AC 
and DC microgrids with an emphasis on similarities in 
formulation. Then, we present how the actual, non-linear and 
non-constant aggregated load models were developed. They 
are based on extensive laboratory measurement tests 
performed on several types commonly used loads for offices 
and residential buildings. We then formulate a generalization 
of the simplified power flow model proposed in [15], using 
the aggregated load models derived in the previous step. 
Simulated results for the proposed generalized power flow 
conclude our work.  

II. BACKGROUND AND PRELIMINARIES 

A. Droop control in AC and DC grids 

A brief review of the principles of droop control in AC grids 
will be given below with an emphasis on the analogy of the 
voltage droop control principles for DC microgrids. One of 
the major aspects of operating AC grids is given by the 
requirement that load and generation are to be balanced at all 
times. This is indeed related to the fact that historically 
energy could not be stored in large quantities and at 
reasonable prices such that to make it available when needed.  
A key feature of the droop control principles in AC grids is 
the use of a global variable (the synchronous frequency) that 
could indicate the imbalance between load and generation in 
any bus of the network. Thus, the control equations for an AC 
grid could be stated as: the active power injection �� at source 
i is controlled to be proportional to the deviation of the 
frequency (Δ��) from its nominal value (e.g. 50 Hz in 
European power networks), such as in (1). 

�� = ��
∗ − �� ∙ Δ��   (1) 

 where �� > 0 is the control gain, also known as droop 
coefficient, ��

∗ ∈ [��
���, ��

���]	is the nominal injection set-

point and ��
���, and ��

��� are the minimum and maximum 
operation points of source i. 
 

B. Modeling of sources in DC PF for LV DCMGs  

The switching devices that interface the generation units such 
as PVs with the DC bus in the proposed microgrid model 
might be seen from the power flow point of view as a 
controlled voltage source with its associated upper level 
controller, which implements the droop- algorithm. Thus, for 
the scope of this analysis only the steady-state characteristics 
of the DC/DC converters are of much importance, while the 
current and voltage primary controllers (usually PI 
controllers) might be ignored due to dynamics decoupling.   

The mathematical model of the source under droop is then 
written as [15]: 

 ����
∗ = �� − ��� ∗ ��,     (1) 

where, ����
∗  is the reference voltage for the source, which 

should be equal to the measured value at the bus. To be noted 
however, that this equation alone does not guarantee to 
achieve proportional load sharing, unless non-local 
(distributed or decentralized) secondary controllers were 
carefully tuned. The math of this equation tells us that this is 
due to the absence of a global variable such as the frequency 
in the case of AC power networks [14].  

III. DERIVATION OF DC COMPATIBLE LOAD MODELS 

As said before, loads are usually modelled as constant 
power loads CPL, but most of the time this is not an accurate 
model. Derivation of actual models for the loads to be directly 
supplied in DC helps us understand the behavior of the DC 
microgrid under abnormal conditions such as under-voltage 
(dip) or in the restoration process after a black-out. Our 
approach is to derive the specific model that best fit the 
steady-state operation characteristic of each type of load. 

Nowadays, most of electronic appliances present in a 
residential or office building have an internal rectifier AC/DC 
on the supply side to the grid.  A question that might be pose 
is “can these appliances be supplied directly with AC or DC 
power without changing their performance?” On the 
theoretical level it was proven that the answer might be yes 
[16]. To answer this question deeper, we have developed an 
experiment to test different appliances called devices under 
test (DUTs) that might be used as “DC ready devices”. It 
consists to energy at direct voltage to appliances normally 
designed to be supplied by AC low voltage plugs (regular 
power supply sockets in offices/houses) and register the 
steady-state power consumption level at different supplied 
voltage levels. The results will be compared with AC 
standards and a proposal for a standard for DC microgrids.  
Therefore, it was a practical test without changing anything in 
the internal-rectifiers. Within the literature we have surveyed 
on this topic we have found few projects attempting to supply 
in DC several loads. One of them is “Nushima project” [17], 
in which the island was supplied by a 360 V DC distribution 
system. In this case, however, appliances were supplied using 
several energy conversion with DC after a typical DC/DC 
converter stage and with AC after an AC/DC inverter stage. 
Another example comes from National Chung Cheng 
University of Taiwan [18], where several native DC loads 
were tested and controlled to understand benefits and barriers 
of DC microgrid. However, no actual derivation of the load 
models took place. It is worth mentioning that most of the 
studies surveyed looked mostly on efficiency aspects when 
comparing the two forms pf power supply AC or DC for low 
voltage microgrids, rather than developing actual models for 
DC compatible loads [19, 20].  

A. DUTs 

The DUTs are selected because there are the most 
common used for people in homes/offices and have internal 
rectifier. They are the emerging technologies, largely deployed 
on a wide range of home appliances, therefore, they form a 
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Figure 1. Schematic of DC source connection for DUTs
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