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In [4] an experimental remote controlled monitoring 
system for a laboratory scale DC microgrid operating at 230 V 
was developed to extract voltage and current operation 
characteristics of several DC native loads and to calculate a 
range of power quality indicators. The study focused basically 
on the evaluation of PQ indices in time domain and do not 
consider specific time windows for performing the analysis.  

 This paper expands the work of [4] and [5] while re-
evaluating former definitions and metrics proposed to quantify 
some of the PQ indicators in time domain. The challenge was 
to define metrics that avoid unquantifiable formulas for the 
perfect (desired) DC signal against which we will compare 
several real signals. Also, this study focuses on a general 
framework on how to derive and use PQ indicators that could 
be meaningful for the choice of power electronic interfaces as 
well as their operational orchestration and control strategy in a 
specific DC based microgrid. 

II. BACKGROUND AND PRELIMINARIES 

A. Design and control aspects for DC/DC converters 

For the simplicity of analysis and understanding we limit our 
discussion to the design parameters of DC/DC switching 
converters only. The DC/AC inverters, which might interface 
the whole DC LV microgrid with the AC bulk power network 
or other AC based sources or loads, were left on purpose out 
of the scope of this study.  
Designing DC/DC switching converters according to technical 
and operational specifications (e.g., rated power, output 
voltage, range of input voltage, voltage ripple, converter 
efficiency) implies to calculate and appropriately select the 
circuit components (e.g., inductor, capacitor, type of diode and 
switch) for the largest possible range of operational conditions 
[6]. It is possible that the parasitic components (e.g., inductor 
resistance, capacitor resistance or diode voltage drop) are 
ignored in the design phase. Then, principles such as inductor-
volt balance, capacitor charge balance and small ripple 
approximation are used for such calculations. Note however, 
that all design parameters are calculated under steady-state 
conditions in order to be able to apply the analysis 
simplifications, and they are further used during the controller 
design phase, either in the current or in the voltage controller 
according to the intended operation. Besides voltage ripples, 
we may notice that either high frequency or low frequency 
components in the input signal might be filtered out 
according to the chosen LC filters of the DC/DC converter.  

B. Decision aspects on data aggregation 

The following analysis on the derivation of useful and 
meaningful PQ indicators for the design and control of DC 
microgrids aims at defining a set of indicators relevant for 
time and frequency domains taking into account two levels of 
data aggregation. The rationale of this choice is: (i) to allow 
monitoring the rapid change of voltage and current signals on 
the DC bus of interest (where some of the DC sources and DC 
loads are connected); and (ii) to capture and identify non-
stationary events that may impact the quality of the DC 
waveforms under monitoring. Therefore, we have chosen the 
one second window for the first level of data aggregation, 

denoted from now on as Ta0, and ten seconds for the next level 
of data aggregation, also called analysis time window, and 
denoted from now on as Tw. The duration of Ta0 was chosen in 
order to preserve compatibility with the approach indicated in 
the most recent IEC 61000-4-30 Standard [7], where it is 
proposed a methodology for data aggregation, with the 
difference that instead of three seconds (for voltage) or 200 ms 
(for all quantities), the analysis window is proposed to be one 
second. The one second window is proposed in [7] to capture 
rapid voltage changes (RVC) and it is found as the best 
window to discriminate steady-state from dynamic state in LV 
AC grids. Further, the rationale of choosing Tw=10s for data 
analysis proposed in this paper is to remain compatible with 
the current practice for PQ evaluation in AC power networks 
and still comply with the practical situations of low inertia and 
high dynamics that characterize DC low voltage microgrids, 
which is the target of this study. 

C. Minimal Requirements for Data Analysis 

The methodology proposed is based on statistical analysis 
methods. Considering that the sampling frequency should be 
at least twice the bandwidth of interest, it is recommended 
when conducting measurements tests to use at least a 1 kHz 
sampling rate which would give reasonably accurate results.  

III. METHODOLOGY TO DERIVE PQ INDICATORS  

The proposed methodology for evaluation of PQ in DC 
microgrids can be described as a sequence of two steps: 

Step 1: On each block of data samples defined above as 
the first level of data aggregation (Ta0=1 s) we perform a set of 
algorithms mathematically described below, providing as 
output a set of metrics (average quantities). 

Step 2: Using the averaged quantities calculated at Step 1, 
another algorithmic round is performed on the analysis 
windows Tw of ten seconds (10s Moving Average with steps 
of 1s, Ta0) on a section of continuously monitored signal of 
one minute. In other words, if considering a sampling rate of 
1kHz, we perform 10s Moving Average of the 1kHz sampled 
values of the signal (10000 samples), with a step of 1 s (1000 
samples), for a total duration of 1 minute. The rationale of this 
approach is to be able to capture the dynamics of the signal 
over a larger monitoring window, but with the minimal loss of 
information that appears due to averaging operations. Ten 
minutes observation intervals recommended for PQ 
assessment in AC systems were considered too large for the 
scope of this study. Note that in our experiment and 
simulation we have used 10kHz sampling rate of the signal 
(1kHz being the recommendation of minimum sampling rate 
required for meaningful results).   

For the definition of PQ indicators for DC LV microgrids 
it is intuitive to resort to indices expressed as ratios of two 
quantities, where the upper quantity represents the disturbance 
from the desired/ideal signal, and the lower quantity represents 
an average of the DC component of the signal under 
monitoring. Indicators of this kind recall the noise-to-signal 
ratios and can be found in different forms.  



A. PQ indicators in time domain 

Considering a waveform �(�) provided in the form of 
discrete samples [��] for �=1..N, available for a data window 
Ta0, then a set of statisical parameters are defined and 
calculated as follows: 

1. the average DC component of x(t) can be written as: 

 ��� =
�

�
∑ ��
�
���     (1) 

with �  being the total number of samples in each Ta0. For 1 
kHz sampling rate we have N=1000. The computation process 
associated with Ta0. is presented here because it is a classical 
statistical metrics (average) that may be part of the 
calculations of other parameters to be defined later. Note that 
the main scope for this calculation is to mirror classical 
waveform information concentrators such as RMS value. 

2. the median of the samples is defined as:  

���,� = ���%    (2) 

Even though both mean and median are two forms of 
averaging, for some of the PQ indices to follow it was 
preferred the use of median in order to overcome one of the 
major disadvantages of mean that is affected by any single 
value being too high or too low compared to the rest of the 
samples. This might be the case in DC LV microgrids where 
several DC/DC power electronics are interfacing loads, 
sources and storage components and they may have slower of 
faster transients of the corresponding controllers.  

3. the yth percentile variation is written as: 

 ��% =
��%
� ���%

�

���,�
    (3) 

where, ��%
�  is the yth percentile of the samples (of which 

values are exceeding the median of the sample vector), and  
��%
�  being the (1-yth) percentile of the samples. This 

parameter intends to quantify the amount of deviation (% 
from the total number of samples) from the mid-point in one 
side or the other (up or down of the mid-point or the ideal 
targeted DC signal). For example it could capture the 
percentage of spikes (e.g. from controllers transients or from 
propagated faults) that are present in the signal compared to 
the close to mid-point values. 
4. the peak-to-peak variation is defined as:, 

 ��� =
���������

���,�
     (4) 

where, ���� = max�{��}, and  ���� = min�{��},		� = 1… �  

The peak-to-peak variation might be in some sense similar to 
the ripple from AC PQ analysis and here it the special case of 
(3) of 100% percentile.  

5. the RMS variation from the mean is defined as: 

 �� =
��

���
    (5) 

where,  �� = �
�

�
∑ (�� − ���)

��
� 	            (6) 

For this parameter the mean was used instead of median, in 
order to keep the classical definition of the RMS value. 

6. the yth percentile displacement factor is defined in such a 
way so as to have a measurable output also in the case of a 
perfect DC signal. Thus, we define it as, 

 ��% = (��%
� /��%

� )    (7) 

where,	��%
� 	���	��%

�  are defined above. 

Note that ����% is the particular case of the peak-to-peak 
displacement factor. 

����% = ����/����    (8) 

7. the RMS variation displacement factor is derived from a 
quantity that catches the asymmetry in the signal shape, as it is 
given in (9). In order to avoid large scales that may appear in 
large variations, a logarithmic scale is then applied, as 
presented in (10). 

�=
�
�

�
∑ (��/���)

�
������

�
�

�
∑ ���/����

�
������

    (9) 

 ���� = �10��	�
∑ (��/���)

�
������

∑ (��/���)
�

������

��   (10) 

8. the combined RMS displacement factor is then defined as 
a product of RMS variation and the RMS displacement factor 
in order to penalize asymmetric large variations around the 
average. 

 ����
∗ = ���� ∗��   (11) 

B. PQ indicators in frequency domain 

In [1] a low frequency distortion (LFD) index was derived 
similar to the total harmonic distortion (THD) index for an AC 
system, assuming the steady state DC value is known and 
constant over the analysis time window, Tw. These 
assumptions however might not be true, as it can be seen later. 
Thus, we propose to quantify the amount of LFD as an energy 
distortion factor that is the ratio between the total energy of 
dominant frequency components and the total energy of the 
signal corresponding to the analysis window Tw. The rational 
for this choice is that in DC LV microgrids due to low inertia 
and sudden changes that can take place at both source and 
load sides we may experience voltage and current signals that 
are both asymmetric and non-periodic. The following steps 
were followed: 

1. Calculate the DFT of the signal on each Ta0, and on each 
Tw. Indeed a DFT is always associated with spectral leakage. 
In power systems, AC PQ standards promote the Hamming 
window. We expect that home appliances of regular office 
equipment's suitable to be directly connected at a DC 
microgrid (now and in the near future) would be susceptible to 
the main frequency components similar an AC system.  That 
is why it is always a tradeoff in choosing a simple or a more 
complicated window type. However, the proposed algorithm 
tries to put this tradeoff on a secondary position of concern as 
long as a moving average is implied.  
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This work proposed a set of time and frequency domain 
indices to quantify possible PQ issues in DC microgrids. 
Design aspects of power electronic interfaces that are core 

ogrids were also discussed in 
relation with the proposed PQ indices. Experimental and 
simulation evaluation of acquired voltage signals of a 
simplistic DC microgrid were used to emphasize their 



meaning and usefulness when assessing PQ issues in DC 
microgrids. This work open the path for the next step of 
evaluation of sensitivity of loads, storage components and 
power electronics controller design with respect to the 
proposed PQ indices. 
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